precise
Implements compensated summation for sequences of Double
. Reduces rounding errors associated with limited precision of floating-point numbers.
val numbers = List(420) { 0.1 } // 420 x 0.01
numbers.preciseSumOf { it } // 42.0 (compensated sum)
numbers.sumOf { it } // 42.00000000000033 (naive sum)
The table shows the total error when summing the same sequence of random numbers. All the terms were rounded to 0.0001 before addition. In the % column, the error of preciseSumOf
compared to sumOf
.
Terms | err( sum ) | err( preciseSum ) | % |
---|---|---|---|
10 | 0.00000000003 | 0.00000000003 | 100.0% |
100 | 0.0000000008 | 0.00000000002 | 3.03% |
1,000 | 0.000000001 | 0.0000000001 | 9.57% |
10,000 | 0.00000002 | 0.0000000007 | 3.57% |
100,000 | 0.0000005 | 0.000000004 | 0.77% |
1,000,000 | 0.000009 | 0.000000003 | 0.03% |
% is err(preciseSum) / err(sum)
Most of the functions use "second-order iterative KahanโBabuลกka algorithm" by Klein (2005) .
Install
settings.gradle.kts
sourceControl {
gitRepository(java.net.URI("https://github.com/rtmigo/precise_kt.git")) {
producesModule("io.github.rtmigo:precise")
}
}
build.gradle.kts
dependencies {
implementation("io.github.rtmigo:precise") {
version { branch = "staging" }
}
}
Import in Kotlin code:
import io.github.rtmigo.precise.* // Kotlin
Lambda functions
val sequence = listOf(1, 2, 3)
// sum
sequence.preciseSumOf { it * 0.1 } // equals 0.6
// arithmetic mean
sequence.preciseMeanOf { it * 0.1 } // equals 0.2
// standard deviation and mean
val (stdev, mean) = sequence.preciseStdevMean { it * 0.1 }
Running sum
Running sum, immutable version:
var sum = PreciseSum(5.0) // 5.0 is optional starting value
sum += 0.1
sum += listOf(0.2, 0.3)
println(sum.value) // 5.6
sum -= 0.2
println(sum.value) // 5.4
Running sum, mutable version (faster):
val sum = MutablePreciseSum(5.0) // 5.0 is optional starting value
sum.add(0.1)
sum.add(listOf(0.2, 0.3))
println(sum.value) // 5.6
sum.add(-0.2)
println(sum.value) // 5.4
Benchmarks
An alternative to compensated summation is to use BigDecimal: there is no error when summing them. However, even in the case of a pre-generated array, BigDecimals are 5-10 times slower.
Method | Time |
---|---|
List<Double>.sumOf (naive) |
17 ms |
List<Double>.preciseSumOf |
48 ms |
MutablePreciseSum |
50 ms |
PreciseSum (immutable) |
75 ms |
List<BigDecimal>.sumOf |
501 ms |
List<Double>.sumOf { it.toBigDecimal() } |
3192 ms |
Other functions
kahanSumOf
implements Kahan compensated summation algorithm in its traditional form. The accuracy is worse than preciseSumOf
, but better than the naive sum.
val sequence = listOf(1, 2, 3)
sequence.kahanSumOf { it * 0.1 } // 0.6
cascadeSumOf
performs pairwise summation. The accuracy is worse than preciseSumOf
, but better than the naive sum.
val sequence = listOf(1, 2, 3)
sequence.cascadeSumOf { it * 0.1 } // 0.6
welfordMeanOf
calculates the arithmetic mean, avoiding overflow when summing too large values.
val sequence = listOf(1, 2, 3)
println(sequence.welfordMeanOf { it * 0.1 }) // 0.3